Paved with good intentions:

Why driver assistance and child restraint systems (CRS) don’t always work as intended…

Dr Christina (Missy) Rudin-Brown

Senior Research Fellow, Human Factors Group
Monash University Accident Research Centre

Presented at Curtin - Monash Accident Research Centre
May 2010
Outline:

• Issue: why DON’T they work like we thought they would?
 – Definition of “behavioural adaptation”
• Examples of in-vehicle technologies that don’t work as well as they ‘should’
• Theory of behavioural adaptation
• Child restraint system (CRS) usability
• Conclusions / future research

Behavioural adaptation:

• Describes the collection of behaviours that occurs following a change to the road traffic system that was not intended by the initiators of that change

• Usually those with negative impacts on safety are of particular interest…
Engineering safety interventions…

Seat belts

• Required equipment in passenger vehicles as of 1964 (Victoria); 1971 (Canada)
 – Lower the probability of serious injury or death by about 40% for front outboard occupants
 – However, the enforcement of their use has resulted in much more modest effects on fatalities ...selective recruitment?
 – Belted habitual ‘non-wearers’ drive faster than belted ‘wearers’
 (Janssen, 1994)
Air bags

- Fleet study of taxis → no effect of airbags on driver behaviour (Sagberg et al., 1997)
- May occur on strategic level (less likely to wear seat belt)
- Study based on insurance data found more aggressive driving in cars with airbags (Peterson et al., 1995)

Centre high-mounted brake lights

- Mandated in Australia since 1990 (Canada since 1986)
 - Fleet studies: 50% reduction in rate of rear-end collisions
 - Drivers show shorter reaction times than with typical brake light configurations
- But…
 - Insurance claims for rear-end collisions only reduced by 3-12% (‘85/86 vs. ‘86-91) (Farmer, 1996)
Studded tyres

- Used primarily in countries with ice- and snow-covered roads; not required equipment

- With studded tyres, drivers drove faster in icy conditions (Rumar et al., 1976)

- Possible that these same effects occur with (more common) snow tyres

Antilock brakes

- Initial predictions = 10-15% reduction in collisions

- Fleet studies of taxis → shorter headways, more aggressive, no reduction in collision frequency (Schenbrenner & Biehl, 1992, Sagberg et al., 1997)

- Insurance data: same frequency and cost (Highway Loss Data Institute, 1994)

- When drivers shown effects of ABS → drive faster and use higher brake pedal forces (Grant & Smiley, 1993)
Electronic Stability Control (ESC)

- Advertising / promotion of ESC may encourage drivers to drive ESC-equipped vehicles in an irresponsible / dangerous manner
- General public survey (2006)
- Survey owners of ESC-equipped vehicles (2008)
- Differences in their driving since using the system

<table>
<thead>
<tr>
<th>Notice Changes to Driving Behaviour</th>
<th>Length of Time Changes Lasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeling more confident (24%)</td>
<td></td>
</tr>
<tr>
<td>Feeling safer (18%)</td>
<td></td>
</tr>
<tr>
<td>Driving more carefully (18%)</td>
<td></td>
</tr>
<tr>
<td>Driving more slowly (13%)</td>
<td></td>
</tr>
<tr>
<td>Being better able to ‘handle’ vehicle (11%)</td>
<td></td>
</tr>
<tr>
<td>Driving faster (9%)</td>
<td></td>
</tr>
<tr>
<td>Improved ability to drive in adverse weather (8%)</td>
<td></td>
</tr>
</tbody>
</table>
In-vehicle Intelligent Transport Systems (ITS)
(Advanced Driver Assistance Systems; ADAS)

Navigation systems

• Glances to roadway ahead:
 ➢ with system = 57%
 ➢ with paper map = 78%
 ➢ from memory = 84%

 (Antin et al., 1990)
Navigation systems

- If dynamic route guidance, congestion in residential areas (Kubota et al., 1995)

Vision enhancement systems

- Installed in some luxury vehicles (e.g., Cadillac Night Vision system); also head-up displays (HUD)
 - increases range and sensitivity of driver’s visual capabilities
 - reduces target detection for peripheral targets (Bossi et al., 1997)
 - may result in:
 - increases in speed
 - increased exposure (i.e., older drivers)
 - reallocation of attention
Forward collision warning systems

- problem of false alarms
- drivers may ignore warnings if too many false positives
- however, there is talk of incentives being offered

Fatigue warning systems

- Now in Volvo, Mercedes models (Driver Alert Control™, Attention Assist™)
 - no effect of FWS on break-taking behaviour (Vincent et al., 1998)
 - warnings may be redundant, ∴ no intrinsic value to driver
Lane departure warning systems

- Currently on the market (available since 2001 in Japan)
- Many heavy trucks equipped (Freightliner; Scania)

Lane departure warning system studies

- Simulator (N=30) vs test-track (N=26)
- 3 groups performed secondary task while driving
 - No warnings
 - Accurate warnings
 - Inaccurate warnings
- Hypotheses:
 1. drivers would learn to rely on accurate warnings to keep them in the lane, \(\therefore \) improve performance on secondary task
 2. drivers would not trust inaccurate warning system
 3. *locus of control* and *sensation-seeking* as potential personality variables
Lane departure warning system study--Results

- Accurate system improved lane keeping
- When using an inaccurate system, only drivers who trusted the system made complete lane departures
 - trust does contribute to behavioural adaptation
- ‘Externals’ and ‘low sensation-seekers’ more likely to trust system
 - certain people may be more likely to develop “automation complacency”

Adaptive cruise control (ACC)

- Currently available on some luxury vehicles, estimated to reduce number of rear-end collisions by 7.5% (Chira-Chavala & Yoo, 1994)
 - goal: reduction of driver workload BUT…will drivers use it as collision warning device?
 - with ACC → drive faster, shorter minimum headway, larger brake pedal forces (Hoedemaeker & Brookhuis, 1998)
 - with ACC → perform in-vehicle tasks they would not normally do (Fancher et al., 1998)
 - experience reduced visual demand of driving (Hoedemaeker & Kopf, 2001)
 - show impaired lane-keeping (Ward et al., 1995; Hoedemaeker & Brookhuis, 1998)
ACC study

(Rudin-Brown & Parker, 2004)

ACC study -- Results

- Main effect of ACC on number of prices found per minute (ACC reduces workload)

- Reaction time to brake lights was longer when drivers used ACC, especially in high sensation-seekers (ACC increases driver distraction)
Intelligent speed adaptation (ISA)

- Can be
 - Advisory (provide warnings)
 - Intervening (actively prevent)
- Effectiveness estimates range from 7-37%, if all vehicles were equipped
- Drivers accept shorter gaps; follow lead vehicle more closely (Comte, 2000)
- Reductions in % time spent over speed limit with time (Warner & Åberg, 2008)

Back ing Aids

- Assist drivers in performing low-speed backing and parking manoeuvres.
- May help to reduce collisions
- Perception and marketing of backing aids
 - “Collision avoidance” vs “parking aid”? (Jenness, et al., 2008)
Backing Aids

- **42 parent-aged participants (25-60 years)**
 - 60 days use
- **3 groups:**
 1. Dashboard mounted video (visual system only) n=15
 2. Rearview mirror mounted video (visual system only) n=12
 3. Sonar (audio system only) n=15

Graphs:

- **Number of In-Vehicle Scans:**
 - Pre-Test Device Off: 1.5
 - Post-Test Device Off: 2

- **Unexpected Obstacles:**
 - Video: 80%
 - Rear View: 70%
 - Radar: 60%
Theory of behavioural adaptation:

- **DRIVING TASK:**
 - **SYSTEM:**
 - **PERSONALITY**
 - locus of control
 - sensation-seeking
 - **MENTAL MODEL**
 - **TRUST**
 - **ADAPTIVE DESIGN**
 - **OTHER FACTORS**
 - gender
 - state
 - age

- **BEHAVIOUR**
- **OBJECT**
- **CONTROL LOOP**
- **FEEDBACK** (direct and indirect/inferred)

Child Restraint System (CRS) Usability
CRS Harness usability

• 42 participants installed 4 CRS rear- and forward-facing (in-vehicle and out-of-vehicle)
• Error severity scores determined in consultation with experts

<table>
<thead>
<tr>
<th>Score</th>
<th>Effect on Child Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Effect on Safety</td>
</tr>
<tr>
<td>1</td>
<td>Hardly Noticeable Effect on Safety</td>
</tr>
<tr>
<td>2 - 3</td>
<td>Insignificant Failure</td>
</tr>
<tr>
<td>4 - 6</td>
<td>Moderate Failure</td>
</tr>
<tr>
<td>7 - 8</td>
<td>Severe Failure</td>
</tr>
<tr>
<td>9 - 10</td>
<td>Very High Severity Failure</td>
</tr>
</tbody>
</table>

- Risk Priority Number (RPN):
 - (# of error occurrences) x (severity score)
- RPN > 42 = likely to compromise CRS effectiveness
ISOFix / LATCh / UAS usability

• Since 2002, all new vehicles and CRS are required (in Canada) to be equipped with lower anchorage, and top tether, attachments.

• Designed to make installing CRS in vehicles easier, with fewer opportunities for misuse.

• Study to assess how well users install a forward-facing CRS using different types of UAS connectors (lower anchorages, top tethers) in both a school bus and a passenger car.
ISOFix / LATCh / UAS usability

- **General:**
 - raise awareness of UAS
 - educate users regarding safety consequences of installation errors
- **School buses:**
 - use maximum seat spacing
 - develop effective installation / inspection procedures for bus drivers / monitors
 - limit CRS to one per bus seat

Percentage of correct installations:

<table>
<thead>
<tr>
<th>CRS</th>
<th>Car</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

85%

Conclusions

- **Design in-vehicle systems with end users (drivers) in mind**
 - Personality
 - Trust in device
 - Feedback from device (direct *and* indirect)
- **Design CRS with end users (parents / carers) in mind**
 - Usability
 - Feedback / clarity
 - Potential for severe consequences of errors (↑ RPN) and ‘False positives’
Future research: “Children in vehicles”

- Naturalistic study of child behaviour in cars
- Objectively document and describe how children behave within CRS, within vehicles
- How they interact with other occupants (e.g., driver)
- Effectiveness of current CRS in keeping children in a safe position within the vehicle
- Ways to enhance the design of vehicle rear seats and CRS

Information session 25 May